Base58.java

/**
 * Copyright 2011 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.syncany.util;

import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

/**
 * <p>Base58 is a way to encode Bitcoin addresses as numbers and letters. Note that this is not the same base58 as used by
 * Flickr, which you may see reference to around the internet.</p>
 *
 * <p>Satoshi says: why base-58 instead of standard base-64 encoding?</p>
 *
 * <ul>
 *   <li>Don't want 0OIl characters that look the same in some fonts and
 *       could be used to create visually identical looking account numbers.</li>
 *   <li>A string with non-alphanumeric characters is not as easily accepted as an account number.</li>
 *   <li>E-mail usually won't line-break if there's no punctuation to break at.</li>
 *   <li>Doubleclicking selects the whole number as one word if it's all alphanumeric.</li>
 * </ul>
 * 
 * @see <a href="https://code.google.com/p/bitcoinj/source/browse/lib/src/com/google/bitcoin/core/Base58.java?r=216deb2d35d1a128a7f617b91f2ca35438aae546">Original source of this class</a>
 * @author Mike Hearn 
 */
public class Base58 {
    public static final char[] ALPHABET = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz".toCharArray();
    private static final int[] INDEXES = new int[128];
    private static final MessageDigest digest;
    
    static {
        try {
            digest = MessageDigest.getInstance("SHA-256");
        } catch (NoSuchAlgorithmException e) {
            throw new RuntimeException(e);  // Can't happen.
        }
    }

    static {
        for (int i = 0; i < INDEXES.length; i++) {
            INDEXES[i] = -1;
        }
        for (int i = 0; i < ALPHABET.length; i++) {
            INDEXES[ALPHABET[i]] = i;
        }
    }

    /** 
     * Encodes the given bytes in base58. No checksum is appended.      
     */
    public static String encode(byte[] input) {
        if (input.length == 0) {
            return "";
        }       
        input = copyOfRange(input, 0, input.length);
        // Count leading zeroes.
        int zeroCount = 0;
        while (zeroCount < input.length && input[zeroCount] == 0) {
            ++zeroCount;
        }
        // The actual encoding.
        byte[] temp = new byte[input.length * 2];
        int j = temp.length;

        int startAt = zeroCount;
        while (startAt < input.length) {
            byte mod = divmod58(input, startAt);
            if (input[startAt] == 0) {
                ++startAt;
            }
            temp[--j] = (byte) ALPHABET[mod];
        }

        // Strip extra '1' if there are some after decoding.
        while (j < temp.length && temp[j] == ALPHABET[0]) {
            ++j;
        }
        // Add as many leading '1' as there were leading zeros.
        while (--zeroCount >= 0) {
            temp[--j] = (byte) ALPHABET[0];
        }

        byte[] output = copyOfRange(temp, j, temp.length);
        try {
            return new String(output, "US-ASCII");
        } catch (UnsupportedEncodingException e) {
            throw new RuntimeException(e);  // Cannot happen.
        }
    }

    public static byte[] decode(String input) {
        if (input.length() == 0) {
            return new byte[0];
        }
        byte[] input58 = new byte[input.length()];
        // Transform the String to a base58 byte sequence
        for (int i = 0; i < input.length(); ++i) {
            char c = input.charAt(i);

            int digit58 = -1;
            if (c >= 0 && c < 128) {
                digit58 = INDEXES[c];
            }
            if (digit58 < 0) {
                throw new IllegalArgumentException("Illegal character " + c + " at " + i);
            }

            input58[i] = (byte) digit58;
        }
        // Count leading zeroes
        int zeroCount = 0;
        while (zeroCount < input58.length && input58[zeroCount] == 0) {
            ++zeroCount;
        }
        // The encoding
        byte[] temp = new byte[input.length()];
        int j = temp.length;

        int startAt = zeroCount;
        while (startAt < input58.length) {
            byte mod = divmod256(input58, startAt);
            if (input58[startAt] == 0) {
                ++startAt;
            }

            temp[--j] = mod;
        }
        // Do no add extra leading zeroes, move j to first non null byte.
        while (j < temp.length && temp[j] == 0) {
            ++j;
        }

        return copyOfRange(temp, j - zeroCount, temp.length);
    }
    
    /**
     * @see #doubleDigest(byte[], int, int)
     */
    public static byte[] doubleDigest(byte[] input) {
        return doubleDigest(input, 0, input.length);
    }

    /**
     * Calculates the SHA-256 hash of the given byte range, and then hashes the resulting hash again. This is
     * standard procedure in Bitcoin. The resulting hash is in big endian form.
     */
    public static byte[] doubleDigest(byte[] input, int offset, int length) {
        synchronized (digest) {
            digest.reset();
            digest.update(input, offset, length);
            byte[] first = digest.digest();
            return digest.digest(first);
        }
    }
    
    //
    // number -> number / 58, returns number % 58
    //
    private static byte divmod58(byte[] number, int startAt) {
        int remainder = 0;
        for (int i = startAt; i < number.length; i++) {
            int digit256 = (int) number[i] & 0xFF;
            int temp = remainder * 256 + digit256;

            number[i] = (byte) (temp / 58);

            remainder = temp % 58;
        }

        return (byte) remainder;
    }

    //
    // number -> number / 256, returns number % 256
    //
    private static byte divmod256(byte[] number58, int startAt) {
        int remainder = 0;
        for (int i = startAt; i < number58.length; i++) {
            int digit58 = (int) number58[i] & 0xFF;
            int temp = remainder * 58 + digit58;

            number58[i] = (byte) (temp / 256);

            remainder = temp % 256;
        }

        return (byte) remainder;
    }

    private static byte[] copyOfRange(byte[] source, int from, int to) {
        byte[] range = new byte[to - from];
        System.arraycopy(source, from, range, 0, range.length);

        return range;
    }
}